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C A L C U L A T I N G  B L A D E  R I N G  F L U T T E R  

V. E. Saren UDC 533.6.013.422 

The investigation of elastic blade ring stability to small vibrations in a flow is one of the basic problems 
of turbomachinery aeroelasticity. In recent decades, primary attention in this field has been paid to the 
development of effective methods for calculating nonstationary aerodynamic forces on a cascade of vibrating 
blades. Nevertheless, despite considerable success in this field, the numerical investigation of the boundary of 
the domain in the space of cascade and flow parameters for which self-excited vibration for the blade ring of a 
turbomachioe is possible, in general, presents major difficulties pertaining to the nonconservative character of 
aerodynamic forces. One of the most common approximate models is based on the smallness of aerodynamic 
forces acting on the blade, compared to the elastic force [1]. For identical blades, this assumption formally 
leads to the characteristic number for an aeroelastic system coinciding with the corresponding aerodynamic 
coefficient determined for the natural frequency of blade vibrations in vacuum. 

Questions related to the applicability of this model and to its use in the case of a small spread in natural 
frequencies of blade have not been investigated sufficiently, despite their practical importance. These are the 
questions to which this paper is devoted. Its results are obtained by developing a method for calculating the 
boundaries of self-excited vibrations of a blade ring in an axial compressor, within the space of its parameters. 
To estimate the influence of the relationship between aerodynamic and elastic forces on the characteristic 
number of an aeroelastic system, we propose an aeroelastic model which consists of a system of clamped thin- 
walled rods in the incompressible flow described by the asymptotic theory of high-solidity airfoil cascades [2]. 
To analyze the stability of the ring formed by blades with a small dispersion of natural frequencies, we use the 
stability quality parameter for the solution of a linear system that  was studied in [3, 4]. The calculated results 
are compared with the experimental results obtained on a compression test bed of the Central Institute of 
Aviation Engineering. 

Let a ring of Z vibrating blades with numbers k = 0, 1, . . . ,  Z - 1 with given vibration forms ~0, 
generalized masses Mk, and rigidity Qk be put in an annular channel with peripherally uniform inviscid 
flow (Fig. I). The blades are rigidly fastened in an inner body (in a disk), and links between them are 
determined by generalized aerodynamic coefficients of influence [I] or coefficients of generalized aerodynamic 
forces corresponding to a given form of blade vibrations. Structural and material damping is neglected. The 
task is to determine the flow parameters at which the blade vibrations do not damp. 

The equation of small vibrations for the described aeroelastic system in the absence of external forces 
has the form 

z-1 
MkY:k(t) + Q k x k ( t ) -  ~ Al-kxt ( t )  = 0, k = 0, 1 , . . . ,  Z -  1, (I) 

1=0 

where t is time; X = (x0, X l , . . . ,  xg-1)  is the vector of generalized displacements of the blades vibrating 
according to the form ~; AI_i  = A t ( A t  = AZ-r ,  r = O, 1, . . . ,  Z - 1) are the aerodynamic influence 
coefficients (AIC) of a blade with number r on the initial blade (r = 0). 

The values of Ar depend on the geometrical parameters of the ring, the inflow parameters, and the forms 
of blade vibrations, as well as on the reduced frequencies of blade vibrations (Strouhal number) Sh = ~b/Vl.  
Here f~ is the ring vibration frequency, 1/sec, b is the characteristic linear size of the blade (length of the 
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Fig. 1 

blade chord in a peripheral cross section); V1 is the velocity of the relative flow at the entrance to the ring in 
the peripheral cross section. If a nontrivial solution of homogeneous system (1) is represented as 

X(t) = X e  ixt, i = v/Z'i -, (2) 

where X = (~0 ,~1 , . . . ,~z -1 )  is an eigenvector, then, at the boundary of self-excited vibrations that 
corresponds to the condition ~ = ReX, the Strouhal number is determined by the frequency ~ = X. In this 
case, the aerodynamic influence coefficients are complex. They are the most complicated element of system 
(1), and success in calculating the boundary of the ring self-excited vibrations depends on the possibility of 
solving the corresponding gasdynamic problem. 

The proposed aeroelastic model of the blade ring can be basically simplified if the following assumptions 
are adopted [1]: 

(1) elastic forces in the blades considerably exceed nonstationary aerodynamic forces affecting the 
blades; 

(2) natural frequencies of the blade vibrations in vacuum w~,(k = O, 1, . . . ,  Z - 1) differ little from 
their mean square values 

Sq= ~ 0  w =  

Hence, Eq. (1), after substitution of solution (2) in it, can be written in the form 

z - 1  
(Awk -- v)~k -- R ~_, A l - k x l  + O ( R  2, R I M  - Mkl) = 0. (3) 

l=0 

Here 

w2 _ f~2 A 2 - a 2 1 pgV12b Qk .  M =  1 ~ 1  
A w k =  F/2 ; v =  ft 2 ; R = ~  f~2M; w k =  Mk' Zk=0  Mk; 

pg is the characteristic density of the flow. The influence coefficient AI-k  related to the velocity head retains 
its initial notation. 

Equation (3) shows that,  at conditions R << 1 (assumption 1) and max Awk << 1 (assumption 
O~k~Z-1 

2), the values of u for which there is a nonzero solution have the order of smallness of values of R and 
max Aw k. From this it follows that, with accuracy up to the linear terms in Eq. (3), it may be assumed 

0<~k~<Z-1 
that A~_k(Sh) = Al-k(Sh0), Sh0 = ~b/V1. 

Thus, in the case under consideration, determination of the ring self-excited vibration boundary is 
reduced to consecutively solving problems of the elastic ring dynamics in vacuum, the aerodynamics of ring 
blades vibrating at a given frequency and form, and the stability of solution for a linear system of first-order 
equations. 

For arbitrary values of the parametcr R, aerodynamic forces in Eq. (1) are inseparable from forces of 
inertia and elasticity. In particular, for identical blades (Mk = M, Qk = Q, k = 0, 1, . . . ,  Z - 1) oscillating 
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under law (2) with a given form ~o, Eq. (1), after multiplying it by the value b/V12, takes the form 

1 - z-1  
(Sho 2 - Sh2)~:/, - ~ n  ~ ]  Al-k(Sh)~t = 0, k = 0, 1 , . . . ,  Z - 1, (4) 

/=o 

where R = pgb3/M is the reduced mass criterion, and the reduced frequency Sh0 = ~ ( b / V a  ) is determined 
by the natural frequency of the  blade vibrations in vacuum. 

The boundary of vibrations of the aeroelastic system corresponds to real values Sh = Sh* that  cause 
the determinant  of the matr ix  of system (4) to vanish, and the corresponding complex eigenvectors X = 
(~:0, ~1 , . - . ,  ~z-1)  give a relative distribution of the generalized displacements of the blades. 

Solving the eigenvalue problem for system (4) in the general case is very difficult due to the 
transcendental dependence of AIC on the generalized frequency Sh. For the model of flow past a cascade, this 
dependence is simpler, and an analytical solution of the problem is possible. 

Let a straight cascade consist of thin, inflexibly fixed plates with thickness A, width b, and span L 
(Fig. 2). We shall assume tha t  A/d,  b/L, h/b << 1 (h is the cascade pitch). We will consider only bending 
vibrations of the  cascade in an incompressible flow, whose velocity vector at infinity before the cascade forms 
an angle a0 with a normal to the front of the cascade. The  equation for small vibrations of the  aeroelastic 
system can be writ ten as 

O2yk(z, t) O4yk(z, t) 1 
Pm S at  2 "IV E J,  Oz 4 2 pgV12CkYk(Z' t) = 0. (5) 

Here S = bA is the  cross-sectional area of the plate, y = yk(z, t) is the shift along the  normal to the middle 
plane of the plate, E is the module  of elasticity; Jx is the moment  of inertia, Ck is the dimensionless coefficient 
of the linear nonstat ionary aerodynamic load on a plate in the cascade, and pm is the density of the plate 
material. 

Since all plates in the cascade are identical, and any one of them can be chosen as the initial one, we 
shall seek harmonic solutions of Eq. (5) in the form 

yk(z, t) = ~(z) e i('~'+kt'), (6) 

where the number  # characterizes the phase shift in the displacements of ncighboring plates in the cascade. 
After substi tut ion of (6) into (5), we obtain the known equation for the vibration form of the thin-walled rods 
under consideration: 

d4Y = o. (7) 
dz 4 

Here 

a 4 _~ Pm S~2 
E J, 

is one of the countable set of values that  admit  
conditions: ~ = Y' = 0, z = 0 (fixed end), ~" = 

[ I pgb l t I + 2 C(Sh,, )j (8) 

nonzero solutions of Eq. (7) subject  to the following boundary 
ffm = 0, z = 1 (free end). 
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The value a l  = 1.875/L corresponds to the first bending form of the plate vibrations. For values of Sh 
that  provide a nonzero solution for system (5) at a = a l ,  Eq. (8) leads to the equation 

Sh0 2 - Sh 2 - / ~ C ( S h ,  #) = 0, Sh0 = wob/Vl, (9) 

where w0 = {a~EJ~/(pmS)} 1/2 is the first natural frequency of the vibrations for a plate in vacuum; /~ = 
pgb2/(pmS) is the reduced mass criteria. The presence of real values of Sh tha t  satisfy Eq. (9) for the given 
parameters of the cascade and the flow is equivalent to the existence of undamped  vibrations of the cascade 
of the plates in a flow. The  last assertion implies the existence of real values of Sh and/z  that  satisfy the two 
equations 

ImC(Sh,/~) = 0, Sh 2 + Re [/~C(Sh,#)] = Sh 2. (10) 

Thus, for the reduced frequency Sh* and the form parameter  #* of vibrations in an aeroelastic system, any 
real solution (Sh*, #*) of system (10) gives critical values that  correspond to the first bending form of the 
plate vibrations in the flow. 

In explicit form, the  function C(Sh,/~) can be obtained as an asymptot ic  solution of the problem of 
flow past a high-solidity (r  = b/h >> 1) cascade of small arcs vibrating in an incompressible flow for [#1 << 1, 

# 0 [2]: 

1 [A0 + A1Sh + A2Sh 2 + A3Sh3]. C(Sh,/~) = #.rei# + ASh 

Here ~ is the angle between the profile chord and the normal to the cascade front, the complex values A, A0, 
A1, A2, and As depend only on the parameter  g r ,  the inflow angle a0, the form of the  arc, and the form of 
its vibrations. 

Let Sh* = Sh*(~tr) be a real, positive solution of the first of Eqs. (10). Then 

d =  Re [(S~.)~ C!Sh*, #r, a0)] , (tl) 

where /~d  = (wo/w) 2 - 1, and w (the frequency of self-excited vibrations) determines the boundary of the 
self-excited vibrations of the aeroelastic system under consideration, in the space of the cascade and flow 
parameters. 

For a cascade of inflexibly fixed plates performing only bending vibrations, the  function d = d*(a0 - /3)  
at # r  = 0.1 (/3 = 0) and 1.0 (/3 = 45 ~ is presented in Fig. 3 (curves 1 and 2), where on the x axis the angle 
of attack a = a0 - ~ is plotted. The  region of self-excited vibrations corresponds to d > d*. 

Note that  without  aerodynamic load (a  = 0) the self-excited vibrations considered are impossible. In 
the region of real values of the reduced mass criteria (/~ ~. 10-2-10-3),  self-excited vibrations are possible, 
beginning with some value of the angle of at tack (a > 0). In addition, for the given values of/~, a decrease in 
the frequency of self-excited vibrations compared with the natural  vibration frequency of the system of plates 
in vacuum is negligibly small only for sufficiently small values of the aerodynamic characteristic d determined 
by Eq. (11). 

Assuming that ,  for the blade ring being considered, the value of d is sufficiently small, we can 
approximate system (3) as 

Z-1 
(Awk -- v)~k -- R ~ AI-k~l = 0 (k = 0, 1, . . . ,  Z -  1), (12) 

l=0 

where AI-k = At_k(Sh0). 
Let us mult iply (12) by (1/Z)e -2'rikr/z, k, r = 0, 1, . . . ,  Z - 1, and sum up the obtained equation for 

all the values of k. After performing elementary transformations,  we write system (12) in equivalent form: 

Z - I  
(RCr q- t/)~r -- ~ AlZl-r~ 1 ---- O. ( 1 2 ' )  

1=0 
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Here ~ ,  Cr, and A#r are related to xk, Ak, and Awk by the inversion formulas 

1 Z-~ Z-~ 1 Z-~ -- ~- E Awke-2~ikr/Z, ~r = Z k=OE 5:ke-2"ikr/Z, Cr = k=O ~ Ake2rikr/Z' Attr -Z k=O 

g-1 Z-1 Z-I 1 
Xk = E ~ re2rirk/z' Ak = -~ 

r=O 
E Cre-21rirk/Z' ~Wk = E Al~re-2xirk/Z" 
r=O r=O 

The quanti ty  Cr, according to the definition of aerodynamic influence coefficients, is the generalized 
aerodynamic force acting on the initial (k = 0) blade of the ring at synchronous vibrations of the blades 
according to a given form T with identical amplitude and phase shift 2zrr/Z between vibrations of neighboring 
blades. In the case of a uniform ring (Awk = 0), from (12') we obtain an equation for the eigenvalue u = -Ck,  
(k = 0, 1, . . . ,  Z - 1) and a necessary condition for self-excited vibrations ImCk >t 0, k = 0, 1, . . . ,  Z - 1. 

If the blades have a disturbance in the natural frequencies, then the problem reduces to determining 
the roots of the characteristic equation in system (12) with matrix D or of system (12 I) with matrix D I. The 
matrices D and D' obviously differ by the form of disturbance of the natural frequencies and by the type of 
nonstationary aerodynamic characteristics of the ring used in the calculation. In particular, a rapid decrease 
in the value of [Ar[ with increase in the number r [1] allows an approximation of matr ix D by a band matrix. 
It is necessary, however, to keep in mind that  such an approximation is appropriate only in the case where 
the critical phase shift #* does not occur close to the values # = 0 and # = 2~r. 

For real blade rings, the value of Z is often large, and matrix D (or D I) is a full matrix of a high 
order. In addition, the matr ix determined from design geometrical parameters and calculation characteristics 
of a specific blade ring inevitably contains uncontrollable small deviations from that  matrix which would be 
adequate for the blade ring. These deviations are connected with errors in the aerodynamic calculation as well 
as with technological deviations in a specific blade ring. To these errors must be added approximation errors 
in the computer, which appeared during operations with a matrix that  were necessary for the calculation of 
characteristic numbers. Thus, any realization of matrix D (or D I) connected with a specific blade ring should 
be considered only as a representative of a set of similar matrices. The practical problem is that  all noted 
deviations together may lead to a significant difference in determination of the flow regime past the ring by 
the exact criteria A = Re A. 

The circumstance just described led to an a t tempt  to use, for the stability analysis of vibrations of a 
blade ring as an aeroelastic system, the stability quality criterion x(D) of matrix D (or D I) [3, 4], which is 
determined by the  equation 

O0 

x(O) -- 211Ollmax ] / I l X l l  2 dt/llX(O)ll2[ (x e (1, oo)) 
P a  

0 
J 

and is a characteristic of the asymptotic stability of the solution of a system of the type dX/dt  = DX at 
some initial disturbance X(0). The value of x(D) slightly depends on small variations of coefficients of the 
matrix D and can serve as a characteristic of the stability of a blade ring described by the set of matrices 
represented by matrix D (or DI). 

Since X gives an upper bound for the solution at the initial disturbance X(0), then the operating 
regimes of a blade ring when x(D) > Xb, where the value of Xb must be determined empirically, can be 
classified as practically unstable. In particular, if the allowable level of dynamic stresses in the blades of axial 
compressors of gas-turbine engines (GTE) is taken to be (5-7) �9 107 Pa [with the usual level of background 
tension (2-3) �9 107 Pal, then Xb = 30-50. 

The relative technological deviation of the natural frequencies for the first three forms of blade 
vibrations in aircraft GTE, which can reach up to a few percent, as is known [1, 5], is one of the most 
important but difficult to evaluate factors influencing the shift of the boundary of blade ring vibrations in the 
field of its characteristics. The stability criterion x(D) can serve as a convenient tool for estimation of the 
influence of said deviation on the aeroelastic properties of the blade ring. 

As an example, Fig. 4 gives the results of calculating the value of x(D') as a function of the relative 
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deviation o. t frequencies for various types of blade ring designs having slightly different natural frequencies of 
vibration. The calculation was carried out for a ring of 20 nontwisted blades with profiles of constant height 
corresponding to the middle cross section of a rotor blade in a compressor stage of a GTE. The flow regime 
past the ring is chosen to be near the boundary of self-excited vibrations of a corresponding uniform ring with 
Sh = 0.011 (Sh* = 0.01). The corresponding value of x(D I) in Fig. 4 is designated by a dashed line. 

For calculation of matrix D I, a distribution of values of A/zr(r = 0, 1 , . . . ,  19) was specified, 
corresponding to one of the forms of disturbance shown in Fig. 4, where the value of log A (A is equal 
to the mean-square value of Awk, k -- 0, 1, . . . ,  19) is plotted on the x axis. 

One can see from the results obtained that, beginning with some value of A, a small (A ... 10 -~) 
disturbance of the natural  frequencies leads to a sharp decrease in the value of X, and, in the given regime, 
provides for practical stability of the blade ring under investigation. Moreover, as noted earlier [6], the ring 
construction denoted by number 1 ("saw-tooth ')  in Fig. 1 is the most effective. 

The approach to the analysis of the aeroelastic stability of a blade ring described above is taken as a 
basis for the method of calculating flutter of a blade ring in the space of its parameters. Calculation of forms 
and frequencies of characteristic vibrations of a design blade in vacuum is carried out by the theory of thin- 
walled rods [7]. Nonstationary aerodynamic characteristics are calculated by the two-dimensional theory of 
flow past a cascade of vibrating profiles for subsonic flow regimes [1, 8] or for a cascade of straight segments for 
supersonic regimes [9]. Consequent calculation of the generalized aerodynamic forces is realized by a numerical 
integration along the middle surface of the blade. Effects connected with flow in the radial gap of the ring are 
not taken into account. 

As an illustration of the application of the suggested method, Fig. 5 shows the results of calculating 
the boundary of bending vibrations of the high-pressure fan rotor blading (calculated rate of increase of total 
pressure -.~1.7) of an aircraft GTE using design parameters. On the x axis is plotted the value of mass flow 
rate .~ normalized to its maximum value at a given rate of rotation ft. Points 1 and 2 refer to the calculation 
(points 1 are the values of ~ obtained at the point of breakaway, and points 2 occur at the appearance of 
self-excited blade vibrations of the first characteristic form). Thus, the area to the right of the curve (under 
.~ = 1) shows the range of flow rates reached at the rotor stage with change in rotation rate. 

As one can see from the calculations results, for this stage, the self-excited vibrations of the rotor 
blades of the first form can be expected on the left branches of characteristics for the average rate of rotation. 
For nominal rotation rates (fi = 1), all points of the characteristic appear in a supersonic flutter zone. 

Based on the results obtained, a corresponding modeling stage w ~  constructed in such a way that the 
natural frequencies of the rotor blades were alternated within a technological deviation, which in this case 
was A ~ 0.05. The results of testing the modeling stage are denoted in Fig. 5 by points 3 and 4 (points 3 
refer to the achieved point of breakaway, and 4 refer to regimes of self-excited bending vibrations). 

As would be expected, the range of allowable flow rate variation for a real stage increased in comparison 
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with the range predicted by the calculations, although, in the tests, flutter at the medium rotation rates took 
place before the breakaway. Supersonic flutter appeared only at rotation rates exceeding the nominal ones. 
Calculation error probably can be explained by the inaccuracy of an aerodynamic model that describes 
transonic and supersonic flow past the rotor. 

The author expresses his gratitude to S. B. Bogomolov, who carried out the laborious calculations 
illustrated in Figs. 4 and 5. 
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